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Minimal Irreversible Quantum Mechanics: An
Axiomatic Formalism

Mario Castagnino1 and Edgard Gunzig2
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An axiomatic formalism for a minimal irreversible quantum mechanics is
introduced. It is shown that a quantum equilibrium and the decoherence
phenomenon are consequences of the axioms and that Lyapunov variables,
exponential survival probabilities, and a classical conditional never-decreasing
entropy can be defined.

1. INTRODUCTION

Let us consider the function y 5 f (x) 5 x 2. Can we say if this function

is an even function or an odd function? The primary (but incorrect) answer

would be that it is an even function. This answer is wrong because, in order

to define a function properly, we must also define its domain of definition

D and its range R, namely

f (x) 5 y

f : D ® R (1.1)

Then if y 5 f (x) 5 x 2 is defined as f : R ® R +, it is an even function. But

if it is defined as f : R + ® R +, the function is neither even nor odd. The

moral of this story is that when we speak about the symmetry of a function

necessarily we must define its domain of definition and its range; if not,

what we may say could be meaningless.
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Let us now consider the SchroÈ dinger equation

i
d ) c &

dt
5 H ) c & (1.2)

and its solution

) c (t) & 5 e 2 iHt ) c (0) & (1.3)

From what we have just learnt, the question, ª Is the set of the time evolutions

obtained from the SchroÈ dinger equation time-reversible or invertible?º [1, 2],

has no meaning if we do not define the domain of definition and the range

of the states ) c & in Eq. (1.3), i.e., the space where these vectors live. If we

choose a Hilbert space * the set of time evolutions of Eq. (1.3) is time-

symmetric and each evolution is invertible. But if we make a different choice
the set can become time-asymmetric and each time evolution can become

noninvertible. Let us explain why this is so.

Let K be the Wigner time-inversion operator. Hilbert space is invariant

under time inversion, namely

K: * ® * (1.4)

But we can choose a non-time-reversal-invariant space as the space of physi-

cally admissible states; let it be f 2 , such that

K: f 2 ® f + Þ f 2 (1.5)

and then within this space the set of time evolutions will turn out to be time-

asymmetric and each evolution noninvertible, as is shown in the literature

(precisely in almost all the references of this paper) and as we will also
demonstrate below.

In this minimal way we can obtain a natural irreversible quantum

mechanics. The aim of this paper is to sketch, using the results of the authors

quoted in the references and our own results, an axiomatic formalism for

this theory which may have two possible advantages over ordinary quan-

tum mechanics:
(i) The universe is clearly time-asymmetric. The new theory may describe

the real universe better than the usual one. We shall further discuss this

possibility in Section 16.

(ii) The new theory has more powerful spectral decompositions, which

makes the study of decaying processes easier.

Let us rephrase what we have said, using physical language: If we forget
the time-asymmetric weak interaction (as is usual in this kind of research,

since the weak interaction is so weak that it is difficult to see how it can

explain the macroscopic time asymmetry [3]), the time-asymmetry problem

can be stated in the following question:
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How can we explain the obvious time asymmetry of the universe and
most of its subsystems if the fundamental laws of physic are time-symmetric?

There are only two causes for asymmetry in nature: either the laws of

nature are asymmetric or the solutions of the equations of the theory are

asymmetric. As time asymmetry is not an exception, the answer is contained

in the question itself: If the laws of nature are time-symmetric, essentially
the only way we have to explain the time asymmetry of the universe is to

postulate that the state of the universe, or, more generally, the space of

physically possible solutions of the universe evolution equations, is not time-

reversal invariant, namely to use the second cause of asymmetry [2, 4]. In

this paper we explore this possibility, using an axiomatic framework.

Moreover, certainly the best way to explain a physical idea is to construct
an axiomatic structure because, having this structure, somehow we can see

the whole idea, even if we cannot foresee all its consequences. Analogously,

it is easier to criticize an idea when it is presented in an axiomatic language.

So we believe that this paper can clarify some issues of the problem of

time asymmetry.

The paper is organized as follows: In Section 2 we define the space
and the notation we will use. In Section 3 the analytic continuation of

the solutions is studied. In Section 4 density matrices and Liouville space

are introduced. In Section 5 the space for the observables is chosen. In

Section 6 the axioms of the theory are stated. In Sections 7 and 8 the

main consequences of the axioms are obtained. In Section 9 time asymmetry
and irreversibility are studied. In Section 10 we show how the SchroÈ dinger

and Heisenberg pictures work in the new formalism. In Section 11 quantum

equilibrium and decoherence are obtained. In Section 12 it is shown that

the norm and the energy are conserved and how Lyapunov variables

appear. In Section 13 entropy is defined. In Section 14 the thermalization

phenomenon is studied. In Section 15 the global nature of time asymmetry
is considered. In Section 16 the Reichenbach diagram is presented. In

Section 17 other results are listed. In Section 18 we draw our main

conclusions. An appendix completes the paper.

2. DEFINITION SPACE

Let us consider a quantum system with a free Hamiltonian H0, endowed

with a discrete plus a continuous spectrum, namely such that

H0 ) E (0)
n & 5 E (0)

n ) E (0)
n &

H0 ) E (0) & 5 E (0) ) E (0) & (2.1)
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where n 5 (0, 1, 2, . . . , N0), 0 # E (0) # ` , E (0)
n $ 0. The total Hamiltonian

will be H 5 H0 1 V, and the perturbation will be such that some bound

states of the discrete spectrum become complex poles, namely we will have

H ) En & 5 En ) En &

H ) E & 5 E ) E & (2.2)

where n 5 (0, 1, 2, . . . , N), 0 # E # ` , and N , N0 (in almost all cases,

for simplicity and in order to fix ideas, we will consider that N 5 0, and

therefore there is only one discrete ground state; a more general case will

be considered in Section 14). Here { ) En & , E 6 & } is a basis of the corresponding

Hilbert space * (e.g., ) E 6 & can be the Lippmann±Schwinger retarded or
advanced bases { ) v 6 & } of ref. 5, and

^ En ) Em & 5 d nm, ^ E 6 ) E8 6 & 5 d (E 2 E8), ^ E 6 ) En & 5 0 (2.3)

I 5 o
n 5 N

n 5 0
) En & ^ En ) 1 #

`

0

) E 6 & ^ E 6 ) dE (2.4)

H 5 o
n 5 N

n 5 0

En ) En & ^ En ) 1 #
`

0

E ) E 6 & ^ E 6 ) dE (2.5)

Let J be the vector space of all possible linear combinations of the basis

{ ) En & , ) E 6 & } vectors [6], so if ) c & P J , then

) c & 5 o
n 5 N

n 5 1

c n ) En & 1 #
`

0

c 6 (E) ) E 6 & dE (2.6)

where neither c n nor c (E) has any peculiar property.

Let K be the Wigner time inversion operator [1]; therefore

K ) En & 5 ) En & , K ) E 6 & 5 ) E 7 & (2.7)

(for the continuous spectrum the Lippmann±Schwinger advanced and retarded

bases have this property). Then, as K is antilinear,

K ) c & 5 o
n 5 N

n 5 1

c *n ) En & 1 #
`

0

c *6 (E) ) E 7 & dE (2.8)

To find an irreversible quantum mechanics we must define a subspace f 2

of J such that

K: f 2 ® f + Þ f 2 (2.9)

namely a subspace which is not invariant under time inversions.

In our opinion there is a unique way to define space f 2 [7±10]. In fact

it is completely reasonable to ask that f 2 have some logical properties,
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namely that f 2 , * (i.e., c n P l2, c 6 (E) P L2[0, ` )), f 2 must be dense

in * 2 (the outgoing state subspace of *), and its topology must be a nuclear

one. Precisely, we will define the spaces * 2 and f 2 as

) c & P * 2 Û c +(E) P H 2
2 ) R 1

) c & P f 2 Û c +(E) P 6 ù H 2
2 ) R 1 5 6 2 (2.10)

where 6 is the Schwarz class function space (this choice allows us to perform
the derivative to any order) and H 2

2 is the space of Hardy class function

from below [5] (this choice introduces causality into our theory [10]). Never-

theless other choices have been used [11, 12].

As f 2 , * 2 we have the Gel’ fand triplet:

f 2 , * 2 , f 3
2 (2.11)

where f 3
2 is the space of antilinear functionals F over f 2 , such that

F[ c ] 5 ^ c ) F & 5 ^ F ) c & * (2.12)

This will be the main arena of all our calculations. but, as we will see, we

must also use the time-inverted objects. Precisely, the spaces *+ and f +

defined as

) c & P *+ Û c 2 (E) P H 2
1 ) R 1

) c & P f + Û c 2 (E) P 6 ù H 2
1 ) R 1 5 6+ (2.13)

where H 2
1 is the Hardy class from above, and the Gel’ fand triplet is

f + , *+ , f 3
1 (2.14)

It is easy to see that the spaces f 2 and f + satisfy (2.9).

We close the section with three observations.

(i) The Hamiltonian H must be time independent, since our aim is to

define an arrow of time in a closed system. In fact, a realistic arrow of time

must be defined using the whole universe as the system [13] (open systems
will be considered in Section 14).

(ii) At first sight one might think that with the method we are about to

propose one can define time asymmetry in a noninteracting system like a

free particle. This is not so since, even if the resulting free particle theory

would formally be time-asymmetric, the entropy will not grow. In fact, the

entropy will only grow, as we will see, if we have a nontrivial S-matrix with
complex poles, which is not the case of a trivial free particle.

(iii) f 2 is dense in * 2 , so, if someone would say that the ª realº physical

states are those of * 2 , we can answer that any one of these states can be

approximated, as close as we wish, with a state of f 2 . So, on physical
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measurement grounds, the states of both spaces are indistinguishable. Never-

theless the two spaces have different kinds of topologies.

3. ANALYTIC CONTINUATIONS

Let us consider a scattering experiment using the Hamiltonian H and

let { ) v + & } be the Lippmann±Schwinger basis (all objects related to this basis
will be labeled with v instead of the E used in the equations of the last

section), then we know that

o
N

n 5 0
) v n & ^ v n ) 1 #

`

0

) v + & ^ v + ) d v 5 I (3.1)

where the ) v n & are the eventual stable bound states. Then

^ w ) c & 5 o
N

n 5 0

^ w ) v n & ^ v n ) c & 1 #
`

0

^ w ) v + & ^ v + ) c & d v (3.2)

Let zn be the real and complex poles of the corresponding S-matrix.

Then, using a simple analytic continuation of Eq. (3.2), it can be demonstrated
[5] that if ) c & P f 2 and ) w & P f +, the inner product ^ w ) c & (which is well

defined since both vectors belong to *) reads

^ w ) c & 5 o
N0

n 5 0

^ w ) fn & ^ fÄn ) c & 1 # G

^ w ) fz & ^ fÄz) c & dz (3.3)

where G is a curve that begins at O and goes to 1 ` of the real axis under

all the poles of the lower half-plane. Also, making the Nakanishi trick

[2, 19], we can obtain

^ w ) c & 5 o
N0

n 5 0
^ w ) fn & ^ fÄn ) c & 1 #

`

0

^ w ) f v & ^ fÄ v ) c & d v (3.4)

where there is a term in the sum for each pole of the S-matrix, precisely, for

each complex pole and each real pole corresponding to the bound states of

the sum of Eq. (3.1). Analogously, it can be demonstrated that

^ w ) H ) c & 5 o
N0

n 5 0
zn ^ w ) fn & ^ fÄn ) c & 1 #

`

0

v ^ w ) f v & ^ fÄ v ) c & d v (3.5)

(see also ref. 14), where ) fn & , ) f v & P f 3
1 , ) fÄ v & , ) fÄ v & P f 3

2 , and in particular

) fÄn & 5 ) v n & (of 0 # n # N) and ) fÄ v & 5 ) v + & [Eq. (44), ref. 15].

Also, if zn is real, it is the eigenenergy of a bound state; and if zn is

complex, it is a pole of the S-matrix.
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Therefore any ) c & P f 2 reads

) c & 5 o
N0

n 5 0
) fn & ^ fÄn ) c & 1 #

`

0

) f v ^ fÄ v ) c & d v (3.6)

in a weak sense (namely premultiplied by any ^ w ) P f +) and ^ fÄ v ) c & P 6 2 .

Analogously,

H ) c & 5 o
N0

n 5 0

z ) fn & ^ fÄn ) c & 1 #
`

0

v ) f v ^ fÄ v ) c & d v (3.7)

Then, in an even weaker sense the two last equations can be written as

I 5 o
N0

n 5 0
) fn & ^ fÄn ) 1 #

`

0

) f v & ^ fÄ v ) d v (3.8)

H 5 o
N0

n 5 0

z ) fn & ^ fÄn ) 1 #
`

0

v ) f v & ^ fÄ v ) d v (3.9)

The bases { ) fn & , ) f v & } and { ) fÄn & , ) fÄ v & } are a biorthonormal system [5, 16],

namely

^ fÄn ) fm & 5 d nm, ^ fÄn ) f v & 5 0, ^ fÄ v ) fn & 5 0, ^ fÄ v ) f v 8 & 5 d ( v 2 v 8)

(3.10)

Also, it can be proved that

^ fn ) fm & 5 d nm e n (3.11)

^ fÄn ) fÄm & 5 d nm e n (3.12)

where e n 5 1 if Im zn 5 0 and e n 5 0 otherwise [15, 12]; namely the states

with Im zn Þ 0 are ª ghostsº with vanishing norm. This fact is evident since

if ) fn & is one of these ghosts, from Eq. (3.1), we have

^ fn ) fn & 5 ^ fn ) 1 o
N

n 5 0
) v n & ^ v n ) 1 #

`

0

) v + & ^ v + ) d v 2 | fn & (3.13)

5 ^ fn ) 1 o
N

n 5 0
) fÄn & ^ fÄn ) 1 #

`

0

) fÄ v & ^ fÄ v ) d v 2 | fn & 5 0

where we have used Eq. (3.8) and that ) fÄn & 5 ) v n & and ) fÄ v & 5 ) v + & [Eq. (44)

of ref. 15].

We will sometimes find it useful to write all these equations using a

shorthand notation where we will call the basis { ) v 0 & , ) v 1 & } just { ) i & }, the
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basis { ) fn & , ) f v & } just { ) i & }, and the basis { ) fÄn & , ) fÄ v & } just ) { ) iÄ & }. Then Eq.

(3.6) reads

) c & 5 o
i

) i & ^ iÄ ) c & 5 o
i

c i ) i & (3.14)

and also we will conventionally say that ^ iÄ ) c & P 6 2 . Equation (3.7) reads

H ) c & 5 o
i

zi ) i & ^ iÄ ) c & (3.15)

In all these equations ) i & P f 3
1 and ) iÄ & P f 3

2 . The biorthonormality of the

system { ) i & } and { ) iÄ & } will be symbolized as

^ iÄ ) j & 5 d ij (3.16)

o
i

) i & ^ iÄ ) 5 I (3.17)

where the symbols have an obvious meaning [e.g., Eq. (3.17) is a shorthand-

notation weak version of Eq.(3.8), etc.].

Also

^ i ) j & 5 d ij e i (3.18)

^ iÄ ) jÄ & 5 d ij e i (3.19)

where e i 5 1 if Im zi 5 0 and e i 5 0 in all other cases.

4. DENSITY MATRICES

Up to now we have just introduced pure states, but we can rephrase

everything using mixed states r . In general r P J ^ J , but usually it is

considered that it belongs to a Liouville space +8 5 * ^ *. The time
evolution of the mixed states can be obtained by solving the Liouville equation

i
d r
dt

5 [H, r (t)] 5 L r (t) (4.1)

where L is the Liouville operator.

From this equation we see that any r
*

that commutes with H is a

stationary state. This state is diagonal in the same basis as H and therefore

it can be written as [cf. Eq. (2.5)]

r
*

5 r 0 ) v 0 & ^ v 0 ) 1 #
`

0

r v ) v 1 & ^ v 1 ) d v (4.2)

where we have taken N 5 0 for simplicity, as we have announced. The

second term on the r.h.s. of the last equation implies the existence of a
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singular structure in the stationary state which was studied at large in ref.

24. So, if we want to develop a rigorous treatment of this singular structure

we are forced to consider that + 5 * % (* ^ *), where the first * contains
the singular structure and the second factor * ^ * is the usual Liouville

space +8, which now will be only considered as a regular structure, and

therefore we introduce the following eigenbasis of L:

r (0) 5 ) v 0 & ^ v 0 ) , r (0, v ) 5 ) v 0 & ^ v 1 ) , r ( v , 0) 5 ) v 1 & ^ v 0 )
b ( v ) 5 ) v 1 & ^ v 1 ) , r ( v , v 8) 5 ) v 1 & ^ v 8 1 ) (4.3)

this is an orthonormal basis in an inner product that we will define below

[cf. Eq. (4.8)].
We can now compute the eigenvalues of the eigenvalues of L:

L r (0) 5 0, L r (0, v ) 5 ( v 0 2 v ) r (0, v ),

L r ( v , 0) 5 ( v 2 v 0) r ( v , 0) (4.4)

L b ( v ) 5 0, L r ( v , v 8) 5 ( v 2 v ) r ( v , v 8)

But for r ( v , v 8) it is better to use Riesz quantum numbers:

s 5 1±2 ( v 1 v 8), 0 # s , `

n 5 v 2 v 8, 2 2 s # n # 2 s (4.5)

So we will write the matrices r ( v , v 8) as

r ( v , v 8) 5 b ( s , n ) (4.6)

So any r P + can be written as

r 5 r 0 r (0) 1 #
`

0

[ r 0 v r (0, v ) 1 r v 0 r ( v , 0) 1 r v b ( v )] d v

1 #
`

0

d s #
2 s

2 2 s

d n r s n b ( s , n ) (4.7)

The inner product among these r is naturally defined as

( r ) r 8) 5 r *0 r 80 1 #
`

0

[ r *0 v r 80 v 1 r *v 0 r 8v 0 1 r *v r 8v ] d v

1 #
`

0

d s #
2 s

2 2 s

d n r *s n r 8s n (4.8)
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From Eq. (4.4), we have

L 5 #
`

0

( v 0 2 v )[ r (0, v ) r ² (0, v ) 2 r ( v , 0) r ² ( v , 0)] d v

1 #
`

0

d s #
2 s

2 2 s

n d n b ( s , n ) b ² ( s , n ) (4.9)

Now let us make the analytic continuation.

The diagonal elements r (0) and b ( v ) will remain untouched, since they

correspond to the stationary state, but we will require that

r v P 6 (4.10)

The terms r (0, v ) and r ( v , 0) can be treated as in the last section, so

they have only one variable v , so we will ask that

r v 0 P 6 ù H 2
2 ) R 1 5 6 2 , r 0 v P 6 ù H 2

1 ) R 1 5 6+ (4.11)

Finally, let us consider the term b ( s , n ). We could promote both real

variables s and n to complex variables, but, as n is the eigenvalue of the

Liouville operator, it is only necessary to promote n ® z P C [17] and leave
s real. Precisely, as

r s n 5 ( b ( s , n ) ) r ) (4.12)

we can consider the complex-valued function of z:

r s z 5 ( b ( s , z) ) r ) (4.13)

and to ask that

r s n P 6 ù H 2
2 ) 2 s

2 2 s 5 6( s )
2 (4.14)

for any s $ 0, thus r s z will be an analytic function of z in the lower half-

plane. Then we will say that r P F 2 if Eqs. (4.10), (4.11), and (4.14) are

r v 0 P 6 ù H 2
2 ) R 1 5 6 2 , r 0 v P 6 ù H 2

1 ) R 1 5 6+. We also define a space
+ 2 such that if r P + 2 we simply have

r v 0 P H 2
2 ) R 1 , r 0 v P H 2

1 ) R 1

r s n P H 2
2 ) 2 s

2 2 s

Let us now define the time-inverted spaces F + and ++. If Eq. (4.10) is

satisfied and
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r v 0 P 6 ù H 2
1 ) R 1 5 6+, r 0 v P 6 ù H 2

2 ) R 1 5 6 2 (4.15)

r s n P 6 ù H 2
1 ) 2 s

2 2 s 5 6( s )
1 (4.16)

for any s $ 0, then in this case r s z will be an analytic function of z in the

upper half-plane, and we will say that r P F + [but in the definition of this

space the basis ) v 1 & of Eq. (4.3) must be changed by the basis ) v 2 & ].
We also define a space ++ such that if r P ++, we have

r v 0 P H 2
1 ) R 1 , r 0 v P H 2

2 ) R 1

r s n P H 2
1 ) 2 s

2 2 s

where we have also changed the basis as before.

Let us now consider the poles.

For the terms r (0, v ) and r ( v , 0) we will find those of the last section,

and we can repeat the analytic continuation up to the curve G of Section 3.

For the terms b ( v ) and b ( s , n ), for some fixed s and for every pole zn

of the S-matrix we will find at the n or z plane two poles 6 2(zn 2 s ) (and

also a pole at n 5 z 5 0 coming from the singular structure of the continuous

field, the b ( v ) term), that we will call z l. Also, it may happen that for some

s j extra poles z j
l may appear [18]. So introducing a curve C in the lower

half-plane that goes, under all the poles, from 2 2 s to 2 s of the real axis

(Fig. 1) and using, as in the pure-states case, the Cauchy theorem, if r P
F + and r 8 P F 2 , we obtain that

Fig. 1. The poles and the curve C.
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1 r ) H r (0) r ² (0)( r ) r 8) 5

1 o
n

[ r (zn, 0) r ² (
,
zn, 0) 1 r (0, zn) r ² (

,
0, zn)]

1 # G

[ r (z, 0) r ² (
,
z, 0) 1 r (0, z) r ² (

,
0, z)] dz

1 o
jl

b ( s j , z j
l )
,
b ² ( s j , z j

l ) 1 #
`

0

d s F b ( s ) b ² ( s )

1 o
l

b ( s , z l) b ² (
,
s , z l) 1 # C

b ( s z) b ² ( ,s z) dz G J ) r 8 2 (4.17)

Namely, in the weak sense

I 5 r (0) r ² (0) 1 o
n F r (zn, 0) r ² (

,
zn, 0) 1 r (0, zn) r ² (

,
0, zn)

1 # G

[ r (z, 0) r ² (
,
z, 0) 1 r (0, z) r ² (

,
0, z)] dz

1 o
jl

b ( s j , z j
l )
,
b ² ( s j , z j

l ) 1 #
`

0

d s F b ( s ) b ² ( s )

1 o
l

b ( s , z l) b ² (
,
s , z l) 1 # C

b ( s z) b ² ( ,s z) dz G (4.18)

In these equations the presence of the poles coming from the singular structure
(in each s 5 const plane) is represented by the terms b ( s ) b ² ( s ).

Then we can write any r P F 2 as

r 5 r 0 r (0) 1 o
n

[ r n0 r (zn, 0) 1 r 0n r (0, zn) 1 # G

[ r z0 r (z, 0) 1 r 0z r (0, z)] dz

1 o
jl

r jl b ( s j , z j
l) 1 #

`

0

d s F r s b ( s ) 1 o
l

r s l b ( s , z l) 1 # C

r s z b ( s z) dz G
(4.19)

Analogously, from the analytic continuation of the Liouville operator

we obtain



Minimal Reversible Quantum Mechanics 59

( r ) L ) r 8) 5 ( r ) { o
n

[(zn 2 v 0) r (zn, 0) r ² (
,
zn, 0) 1 ( v 0 2 z*n ) r (0, zn) r ² (0, zn)]

1 # G

[(z 2 v 0) r (z, 0) r ² (
,
z, 0) 1 ( v 0 2 z*) r (0, z) r ² (

,
0, z)] dz

1 o
jl

b ( s j , z j
l)
,
b ² ( s j , z j

l) 1 #
`

0

d s F o
l

z l b ( s , z l) b ² (
,
s , z l) ) r 8)

1 # C

z b ( s , z) b ² ( ,s , z) ) r 8) dz G J ) r 8 2 (4.20)

where z l 5 n l 2 i g l, g l $ 0 and z j
l 5 n j

l 2 i g j
l, g j

l $ 0, and as in the pure-

states case, G is a curve that goes from 0 to 1 ` of the real axis under all

the poles of the lower half-plane. Namely, in the weak sense, the Liouville

operator reads

H o n [(zn 2 v 0) r (zn, 0) r ² (
,
zn, 0) 1 ( v 0 2 z*n ) r (0, zn) r ² (0, zn)]L 5

1 # G

[(z 2 v 0) r (z, 0) r ² (
,
z, 0) 1 ( v 0 2 z*) r (0, z) r ² (

,
0, z)] dz

1 o
jl

z j
l b ( s j , z j

l)
,
b ² ( s j , z j

l) 1 #
`

0

d s F o
l

z l b ( s , z l) b ² (
,
s , z l)

1 #
2 s

2 2 s

n b ( s , n ) b ² ( , s , n ) d n G (4.21)

As in the pure-states case the bases

{ r (0), r (0, zn), r (zn, 0), r (0, z), r (z, 0), b ( v ), b ( s j , z j
l), b ( s , z l), b ( s , z)}

{( r (0), r (
,
0, zn), r (

,
zn, 0), r (

,
0, z), r (

,
z, 0), b ( v ),

,
b ( s j , z j

l), b (
,
s , z l), b (

,
s , z)}

are a biorthonormal system under the inner product (4.8).3 Also, as in the

pure case,

( b ( s , z l ) b ( s 8, z l8)) 5 d s s 8 d ll8 e l

( b (
,
s , z l ) b ( s Ä 8, z l8)) 5 d s s 8 d ll8 e l (4.22)

where e l 5 0 if Im z l Þ 0 and e l 5 1 if Im z l 5 0, so the states corresponding

to complex poles are ghosts as before. The same thing happens with r (0, zn),
r (zn, 0), r (

,
0, zn), and r (

,
zn, 0).

3 From now on we will consider that the discrete index s j is included in the continuous
index s , and also z j

l is included in z l. Nevertheless we will conserve the terms s j in all the
spectral decompositions.
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We can generalize the definition of trace as

Tr r 5 o
i

^ i ) r ) i & 5 1 r ) o
i

) i & ^ i ) 2 5 1 r ) o
i

b (i0) 2 5 ( r ) I ) (4.23)

where { ) i & } is any basis of *. Now using the inner product (4.8), it can be

easily proved that all the trace of all the off-diagonal terms vanish. Therefore

the trace of all the ghosts vanishes.

Finally, equations similar to Eqs. (3.1) of ref. 15 can be obtained, and

using these equations it can be proved that, if z l, z 8l , z 9l , . . . are complex, then

Tr b ( s , z l) b ( s 8, z l8) 5 0, b ( s , z l) b ( s 8, z l8) b ( s 9, z l9) ? ? ? 5 0 (4.24)

This equation follows also from Eq. (12.12) and says that the trace of the

product of two ghosts and the product of three or more ghosts vanish.

Since the Liouville space is a Hilbert space + 5 * % (* ^ *) we

will have the Gel’ fand triplets

F 2 , + 2 , F 3
2 (4.25)

F + , ++ , F 3
1 (4.26)

Let us observe that, in order to satisfy Eq. (4.35) it is sufficient that the
regular part of r P 6 2 ^ 6+ [since really in the second factor of Eq. (4.3)

there is a bra, not a ket]. Thus, as we will see in more detail in Section 12

[cf. Eq. (12.7)] 6 % ( f 2 ^ f 2 ) , F 2 and 6 % ( f + ^ f +) , F +.

As we will see, F 2 will be the space of physically admissible states,

precisely the space of states such that they evolve with a nondecreasing of

entropy according to the second law of thermodynamics. J % ( J ^ J )\ F 2

is the set of physically nonadmissible states. F + is the space of states such

that they evolve with a nongrowing entropy, and therefore they are clearly

nonphysical. Macroscopically the physically admissible evolutions are those

that appear in nature, namely those that begin in an unstable state and go

toward equilibrium (Gibbs ink drop spreading in a glass of water, a sugar

lump dissolving in a cup of coffee, etc.). We will consider that everything
is the same in the microscopic case, namely that F 2 is the space of physically

realizable states. The physically nonadmissible evolutions of space F + can

be obtained by the time inversion of the admissible ones, therefore they begin

in an equilibrium state and evolve toward an unstable state (the ink or the

sugar concentrating spontaneously and creating the drop or the lump). This
kind of evolutions does not appear in nature, because the spontaneous appear-

ance of an unstable state by a fluctuation, even if not completely impossible

(remember we are developing quantum mechanics, an essentially statistical

theory [6]), is highly improbable.

For all these reasons we will consider F 2 the space of physical states.
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5. LINEAR OPERATORS AND OBSERVABLES

We will now consider the linear operators A, which are (anti)linear
functional over F 2 and therefore belong to F 3

2 , e.g., a derivative operator

belongs to this space.

But these linear operators are merely theoretical or mathematical

ª observables.º Real physical observables are less subtle, e.g., there are not

real apparatuses to measure mathematical derivatives. Real physical devices
only measure ratios of small but finite quantities. Therefore we can consider

that real physical observables live in a space endowed at least with the

properties of 6 % (6 ^ 6). As in the case of the state, it is also useful

that these observable have some analytic properties. There are two natural

subspaces of 6 % (6 ^ 6) with definite analytic properties, F 2 and F +. As

we will see, in order to reproduce the relation between the SchroÈ dinger and
the Heisenberg pictures in the new theory, we must choose F + as the space

of regular physical observables. As

F 2 , F + , + (5.1)

the products between vectors of these two spaces are well defined. Then the

mean values of all the observables of F + in the states of F 2 are well defined.

This property is sufficient to develop a quantum mechanics formalism.

As we will see, in a scattering theory, physical states are related to the

preparation, they propagate toward the future in the SchroÈ dinger picture, and
they are well represented by states of space F 2 , while physical observables

are related to measurements, they propagate toward the past in the Heisenberg

picture, and they are well represented by states of space F + [8].

After all these considerations the mean value of observable A P F + in

the states r P F 2 is

^ A & r 5 A[ r ] 5 ( r ) A) (5.2)

where A[ r ] is an (anti)linear functional and

A 5 A0 r (0) 1 o
n F An0 r (

,
zn, 0) 1 A0n r (

,
0, zn) 1 # G

[Az0 r (
,
z, 0) 1 A0z r (

,
0, z)] dz

1 o
jl

A jl
,
b ( s j , z j

l) 1 #
`

0

d s F A s b ( s ) 1 o
l

A s l b (
,
s , z l)

1 # C

r s z b (
,
s , z) dz G (5.3)

where the coefficients A must satisfy Eqs. (4.15) and (4.16). To fulfill these

conditions, and Eqs. (4.11) and (4.14) for the coefficients of r , it is sufficient
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that the analytic continuation of Eq. (5.2) be possible, one variable in the

lower half-plane and the other in the upper half-plane, as we have done in

ref. 15.
From the Gel’ fand-Maurin theorem [21] we know that we can diagonal-

ize Eq. (5.3) as

A 5 o
i

ai ) ai & ^ ai ) (5.4)

where in general ai P C , i is an index such that the whole spectrum of A is

covered by the sum, and ) ai & belongs to some specific rigged Hilbert space.

if A is self-adjoint, then obviously ai P R and usually ) ai & P 6 3 . In particular

we can expand the energy operator as

H 5 o
i

hi ) hi & ^ hi ) (5.5)

where hi P R and ) hi & P 6 3 , which can simply be obtained from Eq. (2.4)

or Eq. (4.7) as

H 5 #
`

0

E ) E & ^ E ) dE 5 E0 b (0) 1 #
`

0

d s E s b ( s ) (5.6)

Thus H has two different spectral expansions, both very useful: one as

observable Eq. (5.5) and another as an evolution operator equation (3.15),

namely, in the shorthand notation of Section 3,

H 5 o
i

zi ) i & ^ iÄ ) (5.7)

where zi P C . The difference between the two expansions comes from the

fact that really they are weak equations corresponding to

^ c 1 ) H ) c 2 & 5 o
n

hn ^ c 1 ) hn & ^ hn ) c 2 & (5.8)

where ) c 1 & , ) c 2 & P 6,

^ w ) H ) c & 5 o
i

zi ^ w ) i & ^ iÄ ) c & (5.9)

where ) c & P f 2 and ) w & P f +.

Now we have all the mathematical objects to formulate our axiomatic
theory.

6. AXIOMS

We will follow the main lines of ref. 6. So we postulate:

Axiom 1. To each dynamical variable 5 (physical concept) there corres-

ponds a linear operator R P F + , ++ (mathematical object) and the possible

values of the dynamical variable are the eigenvalues of the operator.
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Axiom 2. To each physical state there corresponds a unique state operator

r P F 2 , + 2 . The average value of the dynamical variable 5 (e.g., of

position, momentum, energy, etc.) represented by the operator R, in the virtual
ensemble of events that may result from a preparation procedure for the state,

represented by the operator r , is

^ 5 & r 5
Tr[ r R]

Tr r
(6.1)

From these axioms, if we postulate the invariance of the theory under

Galilei transformation, the explicit expression of the operators R can be found

and SchroÈ dinger and Liouville equations can be deduced as in ref. 6 or 22.
Moreover, Planck’ s constant " appears as a proportionality coefficient

between the geometrical generators and the physical magnitudes. In fact,

these deductions can be implemented since we have just restricted the domain

of definition of the states and of the observables, but all the relevant demon-

strations of the quoted references remain valid. We do not reproduce this

demonstration here because it is not in our main line of reasoning. So, in order
to avoid these demonstrations, even if we maintain the Galilei invariance, we

make precise the main features of the time evolution by the following axiom:

Axiom 3. The time evolution of a state r (t) P F 2 is

r (t) 5 e 2 iHtr (0)eiHt 5 e 2 iLt r (0) (6.2)

where r (0), r (t) P F 2 , and H is the Hamiltonian operator of the system.

In this equation we must use Eq. (5.7) if we want to expand H. The

exponents iHt really read i " 2 1Ht, so it is this axiom that introduces the
universal constant " . Of course, we take " 5 1 below. From this axiom we

also can demonstrate that r (t) satisfies the Liouville equation (4.1).

Since we have restricted the spaces of definition of the observables and

the states to two spaces which are contained in +, nothing unphysical can

really happen. Furthermore, we obviously retain the main result of the usual
quantum physics, as we will see in the next two sections, but with the new

axiomatic structure we will gain new results that are, in fact, confirmed by

experimental evidence.

7. FIRST CONSEQUENCES OF THE AXIOMS

We can now obtain the first consequences of the axioms following ref. 6:

(a) As r is both in the numerator and in the denominator of Eq. (6.1),
we can normalize the state as

Tr r 5 1 (7.1)
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(b) If we postulate that projectors like P 5 ) u & ^ u ) are observables, and

since their eigenvalues are 0 and 1, we can see that ^ P & r 5 ^ u ) r ) u & is real

and positive, so (cf. Theorem 1, ref. 6)

r 5 r ² , ^ u ) r ) u & $ 0 (7.2)

(c) As r 5 r ² , r can be expanded as

r 5 o
i

r i ) r i & ^ r i ) (7.3)

where r i P R , and ) r i & belongs to some adequate rigged Hilbert space. Then

from the three first equations of this section we can obtain that

o
i

r i 5 1, r i 5 r *i , 0 # r i # 1 (7.4)

(d) If we postulate that the mean value of any dynamical variable must

be real, i.e.,

^ 5 & r P R (7.5)

then, for any pure state r 5 ) v & ^ v ) , ) v & P f 2 , we have

^ 5 & r 5 ^ v ) R ) v & P R (7.6)

so, according to Theorem 1 of ref. 6, we have

R 5 R ² (7.7)

so we can expand R as in Eq. (4.9), namely

R 5 o
n

rn ) rn & ^ rn ) (7.8)

where rn P R , and ) rn & belongs to some adequate rigged Hilbert space.

8. PROBABILITIES

From Axiom 1 we have that

^ 5 & r 5 o
n

rn pn( r ) (8.1)

where pn( r ) is the probability to obtain the measurement rn when we measure

the dynamical variable 5 in the quantum state r . From Axiom 2 we also have

^ 5 & r 5 R[ r ] 5 Tr F 1 o n rn ) rn & ^ rn ) 2 r G 5 o
n

rn ^ rn ) r ) rn & (8.2)



Minimal Reversible Quantum Mechanics 65

In order for the last two equations to be equal it is sufficient that

pn( r ) 5 ^ rn ) r ) rn & (8.3)

It can be proved that this condition is also necessary if we repeat the

corresponding demonstration of ref. 6.

Then, for every state r and every complete set of commuting observables

{R( a )}, we can compute the probability to obtain the measurement r ( a )
n for

the observable R ( a ). In fact, we can expand the observable as

R( a ) 5 o
n

r ( a )
n ) r ( a )

n & ^ r ( a )
n ) (8.4)

and the probability is

p( a )
n ( r ) 5 ^ r ( a )

n ) r ) r ( a )
n & (8.5)

So we can see that r really defines the quantum state of the system

since, knowing r , we can obtain the probability of any measurement for any

observable of the complete set of commuting observables. This is in fact the

maximal information that we can obtain from a quantum state r , and in

consequence this information also defines the quantum state of the system.

9. TIME ASYMMETRY AND IRREVERSIBILITY

In the last two sections we briefly reviewed some results of ordinary

quantum mechanics that turn out to be also valid in the new theory. It would

be quite boring to continue this road reobtaining well-known results, so we

will now consider the new features.
We will say that:

Time asymmetry is the property of some single objects that turn out to

be asymmetric under the action of the time-inversion Wigner operator K,

e.g., nonreal states ) c & , defined as the states such that K ) c & Þ ) c & . In our

case these objects are always statistical objects from the ensemble we are

considering, since we are developing a statistical theory. Therefore the time
asymmetry of the particular evolution of the members of the ensemble will

be never taken into account.

Non-time-reversal invariance is the property of some set of objects which

are not invariant under K, e.g., the space f 2 which has the property (2.9).

Irreversibility is the property of some physical time evolutions such that

the time-inverted evolution turns out to be nonphysical, namely it is physically
forbidden [1, 2].

To make the term more precise, the irreversibility just introduced is the

dynamical irreversibility (as we will see in a moment, this irreversibility stems

directly from the axioms). Thermodynamic irreversibility will be defined in



66 Castagnino and Gunzig

Section 13 as the increase of entropy (and we will see that more elements

must be added to define this notion).

From the just-quoted Eq. (2.9) and the definitions at the beginning of
Section 4 we have that

_: F 2 ® F + Þ F 2 (9.1)

where _ r 5 K r K ² , and we can see that the physically admissible quantum

state space of the theory is not time-reversal invariant.

From ref. 15, Eq. (4.2), and Eq. (4.3), we know that

e 2 iHt: f 2 ® f 2 if t . 0, e 2 iHt: f + ® f + if t , 0 (9.2)

Therefore, using the same demonstration regarding now the analytic properties

of the functions of variable n , it can be proved that

e 2 iLt: f 2 ® f 2 if t . 0, e 2 iLt: F + ® F + if t , 0 (9.3)

so Axiom 3 states that if r (t) P F 2 , its evolution is only defined for t . 0,

and therefore the evolution operator e 2 iLt cannot be physically inverted since

its mathematical inverted operator eiLt corresponds to t , 0 and therefore it

is not well defined within space F 2 . Namely the inverted evolution is forbid-

den by Axiom 3. Therefore we have found that the new theory contains
dynamical irreversible evolutions.

Of course t 5 0 is an arbitrary time, so the condition t . 0 physically

simply means that operators e 2 iHt and e 2 iLt are not well defined for t ® 2 `
for the state of space F 2 . Analogously, the condition t , 0 means that the

same operators are not well defined for t ® 1 ` for the states of F +.

10. SCHROÈ DINGER AND HEISENBERG PICTURES AND
SCATTERING EXPERIMENTS

In the SchroÈ dinger picture, if r (t) is the time-variable state of the system

and 5 is a fixed dynamical variable, from Axioms 2 and 3 we have

^ 5 & r (t) 5 Tr[ r (t)R] 5 Tr[e 2 iLt r (0)R] 5 Tr[e 2 iHtr (0)eiHtR] (10.1)

According to Axiom 3, r (t) P F 2 , so, from Eq. (9.31), we know that the

last equation is only valid if t . 0. Now from the cyclic property of the trace

we also have that

^ 5 & r (t) 5 Tr[ r (0)eiHtRe 2 iHt] (10.2)

so we can define a time-variable Heisenberg operator:

RH(t) 5 e 2 iH( 2 t)ReiH( 2 t) 5 e 2 iL( 2 t)R (10.3)
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Then we have the Heisenberg-picture equation

^ 5 & r (t) 5 Tr[ r (0)RH(t)] (10.4)

But from Eq. (9.32) and since 2 t , 0, we know that the last time equation

is only valid if R P F +. This fact justifies both the choice of the operator

space done in Axiom 1 and what we said in Section 4.
In other words, in a scattering experiment [8, 11] the states are prepared

at a time t1 and propagate toward the future and therefore to times t . t1,
so according to Eq. (9.31), r P F 2 . At time t2 . t1 dynamical variables 5
are measured, i.e., the S-matrix and the corresponding probabilities are

obtained. But we can invert the procedure and propagate the dynamical
variables 5 and the corresponding operators R toward the past down to time

t1 , t2. Then we must propagate R toward the past, therefore according to

Eq. (9.32), R P F +. So now we see the motivation of the choice of the spaces

for r and R made in Axioms 1 and 2, namely r P F 2 and R P F +.

11. EQUILIBRIUM AND DECOHERENCE

We will approach the problem of equilibrium in four steps: in the first

one we will obtain a strong limit, in the second one a weak limit, in the third

one the dominant time evolution components, and in the fourth one we will

combine the last two to obtain some physical conclusions.

(a) From Eqs. (4.19) and (4.21) we can deduce that if r (t) P F 2

r (t) 5 r 0 r (0) 1 o
n

[ r n0e
2 i(zn 2 v 0)t r (zn, 0) 1 r 0ne

2 i( v 0 2 z*
n)t r (0, zn)]

1 # G

[ r z0e
2 i(z 2 v 0)t r (z, 0) 1 r 0ze

2 i( v 0 2 z)t r (0, z)] dz

1 o
jl

r jle
2 i z j

lt b ( s j , z j
l) 1 #

`

0

d s F r s b ( s ) 1 o
l

r s le
2 i z lt b ( s , z l)

1 # C

r s ze
2 izt b ( s z) dz G (11.1)

where z l and zn symbolize the complex poles. If we call, as is traditional,

zn 5 v n 2
i

2
g n, g n . 0

z l 5 n l 2 i G l, G l . 0 (11.2)
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we have that

r (t) 5 r 0 r (0) 1 o
n

[ r n0e
2 i( v n 2 v 0)te 2 (1/2) g nt r (zn, 0)

1 r 0ne
2 i( v 0 2 v n)te 2 (1/2) g nt r (0, zn)]

1 # G

[ r z0e
2 i(z2 v 0)t r (z, 0) 1 r 0ze

2 i( v 0 2 z)t r (0, z)] dz

1 o
jl

r jle
2 i n j

lte 2 G j
lt b ( s j , z j

l) 1 #
`

0

d s F r s b ( s ) 1 o
l

r s le
2 i n lte 2 G lt b ( s , z l)

1 # C

r s ze
2 izt b ( s z) dz G (11.3)

For complex poles we have g n, G l . 0, so terms containing these positive

gammas vanish when t ® 1 ` . The terms corresponding the continuous

spectra do not vanish since the curves G and C can be taken to be contained

in the real axis almost anywhere. Then we obtain the strong limit

r (t) ® r
*
(t) 5 r 0 r (0) 1 # G

[ r z0e
2 i(z2 v 0)t r (z, 0) 1 r 0ze

2 i( v 0 2 z)t r (0, z)] dz

1 #
`

0

d s F r s b ( s ) 1 # C

r s ze
2 izt b ( s z) dz G (11.4)

so any state goes to a state of ª dynamical equilibrium.º We use the adjective

ª dynamicalº since it is a final state that it is a function of time. If we take

into account normalization (7.1), we have

Tr r (t) 5 Tr r
*
(t) 5 1 (11.5)

so

r 0 1 #
`

0

r s d s 5 1 (11.6)

This is certainly an equation that the r 0 and r s must satisfy, but in principle

this is the only condition.

So in general the dynamical equilibrium state is not unique and depends
on the initial conditions. This would be the general case.

(b) Moreover, if we consider that really the r are functionals over the

observables A, since only the mean values ^ A & r 5 A[ r ] are physically observed,

and we use the Riemann±Lebesgue theorem as in ref. 24, we obtain in a

weak sense that
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r (t) ® r
*

5 r 0 r (0) 1 #
`

0

r s r ( s ) d s (11.7)

Therefore only the terms on the diagonal remain and we obtain a stationary
final equilibrium as a weak limit. Only the state r (0), corresponding to the

ground state of the discrete spectrum (e.g., an oscillator), and the states r ( s ),

corresponding to the diagonal states of the continuous one (e.g., the bath),

remain in equilibrium. Thus we have proved that quantum decoherence takes

place in our theory.

(c) But, using this method, we just obtain the limit, but we cannot see
how this limit is attained. So we will use another approach. We know that

the dominant component of the evolution toward equilibrium is given by the

pole terms [16]. In fact, this component is an excellent approximation for

intermediate times: not too short times, so the Zeno effect would not be

important; not too long times, so the Khalfin effect would not be important.

Furthermore , experimentally we know that this intermediate period turns out
to be very long, since the Khalfin effect has not yet been detected. So if we

want to have a very good approximation of the evolution toward equilibrium,

we can neglect the regular background field terms of curves G and C and

only consider the pole terms and the singular diagonal terms; i.e.,

r (t) 5 r 0 r (0) 1 o
n

[ r n0e
2 i( v n 2 v 0)te 2 (1/2) g nt r (zn, 0)

1 r 0ne
2 i( v 0 2 v n)te 2 (1/2) g nt r (0, zn)]

1 o
jl

r jle
2 i n j

lte 2 G j
lt b ( s j , z j

l)

1 #
`

0

d s F r s b ( s ) 1 o
l

r s le
2 i n lte 2 G lt b ( s , z l) G (11.8)

We will write

r
*

5 r 0 r (0) 1 #
`

0

r s r ( s ) d s (11.9)

e 2 g mint r 1(t) 5 o
n F r n0e

2 i( v n 2 v 0)te 2 (i/2) g nt r (zn, 0)

1 r 0ne
2 i( v 0 2 v n)te 2 (i/2) g nt r (0, zn)

1 o
jl

r jle
2 i n j

lte 2 G j
lt b ( s j , z j

l) 1 #
`

0

d s o
l

r s le
2 i n lte 2 i G l b ( s , z l) G

(11.10)
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where we have made explicit the minimum of the g and the G in the l.h.s.

of the second equation. Since g , G . 0, when t ® ` we have

r (t) ® r
*

(11.11)

So in this case we obtain the usual stationary equilibrium, which is not time
dependent (but it still depends on the initial condition, through the r 0 and

the r s ; we will find an equilibrium independent of these conditions in Section

14). The normalization condition is still Eq. (11.6) and we have

Tr r 1(t) 5 0 (11.12)

which is also a consequence of the fact that the ghost has vanishing trace.

So again we have obtained the usual equilibrium state and, as the off-

diagonal terms vanish when t ® ` , the phenomenon of decoherence is
also proved.

The present method has been used to study decoherence in the cosmologi-

cal case [25].

12. CONSERVATION OF THE NORM, THE TRACE, AND THE
ENERGY. LYAPUNOV VARIABLES. SURVIVAL
PROBABILITY

(a) In Eq. (11.3) we have shown that some states of the theory vanish
for t ® 1 ` , precisely the ª ghostº states such that g n, G l . 0. Then one

might wonder if the trace, the norm, and the energy are conserved in our

theory. In fact, this is so, since we know that the trace of the off-diagonal

terms vanishes, so we have

Tr r (t) 5 r 0 1 #
`

0

r s d s 5 1 (12.1)

Also

Tr[ r (t)H] 5 v 0 r 0 1 #
`

0

s r s d s 5 const (12.2)

so the trace and the mean value of the energy are constant.

In the pure state case these equations read

^ c ) c & 5 1 (12.3)

^ c ) H ) c & 5 const (12.4)

so the norm of pure states ) c & is also a constant.

(b) To continue, let us repeat the reasoning at the beginning of this

section in a different case: we will use another basis (precisely, the one that
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can be obtained by the products of the basis of Section 3) and the shorthand

notation of Section 3 and let N Þ 0. Let us consider the space 6 % ( f 2 ^
f 2 ) and a state r P 6 % ( f 2 ^ f 2 ) which we can develop as

r 5 o
i

r i ) i & ^ i ) 1 o
ij

r ij ) i & ^ j ) (12.5)

where r i P 6, r ij P 6 2 ^ 6+. Now as

r ij 5 r s 1 (1/2) n , s 2 (1/2) n 5 r r n (12.6)

it turns out that r P F 2 , since r s n as a function of n belongs to 6( s )
2 ; then

we can conclude that

6 % ( f 2 ^ f 2 ) , F 2 , + 2 , F 3
2 , 6 3 % ( f 3

2 ^ f 3
2 ) (12.7)

So any function b P F 3
2 [let say r P F 2 or b ( s , j l) P F 3

2 ] can also be

expanded as in Eq. (12.5) and then

b (t) 5 e 2 iHt1 o i
b i ) i & ^ i ) 1 o

ij
b ij ) i & ^ j ) 2 eiHt

5 o
i

b i ) i & ^ i ) 1 o
ij

b ije
2 i(z*i 2 z*

j ) ) i & ^ j ) (12.8)

Then as usual, if we call

zi 5 v i 2
i

2
g i , g i . 0 (12.9)

we have

b (t) 5 o
i

b i ) i & ^ i ) 1 o
ij

b ij e
2 i( v j 2 v i)te 2 (1/2)( g i 1 g j) ) i & ^ j )

5 o
i

b i ) i & ^ i ) 1 o
IJ

b IJ e 2 i( v J 2 v I)t ) v I & ^ v J )

1 o
ij Þ IJ

b ij e
2 i( v j 2 v i)te 2 (1/2)( g i 1 g j)t ) i & ^ j ) (12.10)

where again the indices I, J, . . . correspond to the real poles of the real

continuous spectrum (ij Þ IJ means that either i or j or both correspond to

ª ghostº states) and as g i 1 g j . 0, so if we take t ® ` , we can see that we

can expand b
*
(t) and e 2 g mint b 1(t) as

b
*
(t) 5 o

i
b i ) i & ^ i ) 1 o

IJ
b IJe

2 i( v J 2 v I)t ) v I & ^ v J ) (12.11)

e 2 g mint b 1(t) 5 o
ij Þ IJ

b ij e
2 i( v j 2 v i)te 2 (1/2)( g i 1 g j)t ) i & ^ j ) (12.12)
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Finally on this basis the conservation of the norm and the energy read

Tr b (t) 5 o
i

b i 5 1 (12.13)

Tr( b (t)H) 5 o
i

v i b i 5 const (12.14)

so we have proved, in another basis, that the trace and the mean value of

the energy are constant.

Up to now, every scalar we have introduced is time constant and it

seems impossible to define Lyapunov variables. But again let us try to find

these results, using now another approach, considering only the regular com-
ponent r reg P * ^ * of r and using the restriction of the trace on the regular

component, namely

trr reg 5 o
i

^ i ) r reg ) i & 5 o
i

^ iÄ ) r reg ) i & (12.15)

where the last equation can be obtained by analytic continuation. Then we have

tr r reg(t) 5 o
i

r iie
2 g it ^ i ) i & 5 o

i
r iie

2 i g it e i 5 o
I

r II 5 const (12.16)

tr[ r reg(t)H] 5 o
i

r ii 1 v i 2
i

2
g i 2 e 2 g it ^ i ) i &

5 o
i

r ii 1 v i 2
i

2
g i 2 e 2 i g it e i 5 o

I
v I r II 5 const (12.17)

so again everything is constant ad we cannot find Lyapunov variables.

From Eq. (12.12) we can now prove Eq. (4.24). In fact, in r 1(t) or b 1(t)
there are only terms like ) no-ghost & ^ ghost ) , ) ghost & ^ no-ghost ) , and

) ghost & ^ ghost ) . If we compute r 2
1(t) or b 2

1(t) only the combination ) ghost & ^ no-

ghost ) no-ghost & ^ ghost ) survives, so these squares have only ) ghost & ^ ghost )
terms and their traces vanish. Similarly we can prove that the powers higher

than two of r 1(t) or b 1(t) vanish.
(c) We have just learnt that the usual constants of quantum mechanics

remain constant in the new theory, so they are not Lyapunov variables,

namely variable, never-decreasing quantities. Nevertheless we can define

Lyapunov variables in the new theory if we introduce the new ª metricº

operators

MÄ 5 o
i

) iÄ & ^ iÄ ) , M 5 o
i

) i & ^ i ) (12.18)

The role of these operators is to exchange bases { ) iÄ & } and { ) i & } since from

Eq. (3.16) we have
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MÄ ) i & 5 o
j

) jÄ & ^ jÄ ) i & 5 ) iÄ & (12.19)

M ) iÄ 5 o
j

) j & ^ j ) iÄ & 5 ) i & (12.20)

this would happen, e.g., in the b (t) of Eq. (12.8). Therefore

MÄ : f 2 ® f +, M: f + ® f 2 (12.21)

Then from Eq. (3.16) we have

MMÄ 5 MÄ M 5 1 (12.22)

^ iÄ ) M ) jÄ & 5 d ij (12.23)

^ i ) MÄ ) j & 5 d ij (12.24)

so the role of the operators M and MÄ is to eliminate the ª ghostº factor e i

from Eqs. (3.18) and (3.19) and, as we can see, to make a variable what was

previously a constant.

Then from Eq. (11.3) we now have

tr[ r reg(t)MÄ ] 5 o
i

r iie
2 g it ^ i ) MÄ ) i & 5 o

I
r II 1 o

i Þ I
r iie

2 g it

5 const 1 o
i Þ I

r iie
2 g it 5 2 Y(t) (12.25)

where now Y(t) is a Lyapunov variable, if, e.g., r ii $ 0, and we have

YÇ (t) 5 o
i Þ I

r ii g ie
2 g it . 0 (12.26)

because from Eq. (11.2) g i . 0 if i Þ I.
If we want to find a Lyapunov variable without the condition r ii $ 0

we can introduce the ª linear entropyº [26]

tr[( r reg(t)MÄ ) ² r reg(t)MÄ ] 5 o
I

) r II ) 2 1 o
i Þ I

) r ii ) 2e 2 g it 5 2 YG(t) (12.27)

and in this case we surely have Yx
G(t) . 0 since ) r ii ) 2 . 0.

(d) We can also compute survival probabilities and find that in the theory

we have nonregular states with pure exponential survival probability. In fact let

r (t) 5 ) i(t) & ^ i(t) ) (12.28)

) i(t) & P f 3
1 . At t 5 0 we can consider the observable R 5 ) c & ^ c ) P F + and

see how the probability pi(t) to measure the state r (t) in the eigenstate ) c )

evolves: Using Eq. (8.3), we find

pi(t) 5 ^ c ) i(t) & ^ i(t) ) c & 5 e 2 g it ^ c ) i(0) & ^ i(0) ) c & (12.29)
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which is an exponentially decaying survival probability with mean life

g 2 1
i . This life-time turns out to be infinite for the non-ghost states ) v I & , since

in this case g I 5 0. Then the non-ghost states are stable states and the ghost
are unstable decaying states. The physical meaning of the exponents g i is

now clear, they are the inverse of the mean-life of the decaying processes

within the theory.

In the case of the generic state of Eq. (12.10) and a generic operator

R 5 ( a c a ) c a & ^ c a ) we have

p r (t) 5 o
ij a

r ij c a e 2 i( v j 2 v i)e 2 (1/2)( g i 1 g j)t ^ c a ) i & ^ j ) c a &

5 o
IJ a

r IJ c a ^ c a ) I & ^ J ) c a & e 2 i( v J 2 v I)t

1 o
ij Þ I

r ij c a e 2 i( v j 2 v i)te 2 (1/2)( g i 1 g j)t ^ c a ) i & ^ j ) c a & (12.30)

The second term on the r.h.s. is clearly the dominant exponential component

of the survival probability, while the first one gives rise to the Zeno and
Khalfin effects, as can be seen in examples [27].

13. ENTROPY

As we have seen, the irreversibility of the time evolution of the new

theory allows us to introduce Lyapunov variables. In particular, the

equilibrium state r
*
(t) defined in Section 11 can be used to define a very

important Lyapunov variable: a quantum conditional entropy [20]. This

entropy coincides with the usual conditional entropy in the classical limit,
which has a remarkable property: it never decreases under a generic

evolution driven by a Markov operator. It is therefore an excellent candidate

for the phenomenological internal entropy. In this paper the quantum

conditional entropy is just the quantum analogue of the classical conditional

entropy, a extensive, ever-growing Lyapunov variable that vanishes at

equilibrium. A rigorous and complete study that relates this entropy with
other kinds of entropy is lacking (although see refs. 2, 28, and 29).

The naive definition of quantum conditional entropy of the state r
would be

S 5 2 Tr[ r log( r r 2 1

*
)] (13.1)

where r
*

is an equilibrium state like the one of Eq. (11.9). Of course, at

equilibrium we have S 5 0.
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In this section we will use the time evolution based on the dominant

pole component of Eq. (11.8) (so N 5 0):

r (t) 5 r 0 r (0) 1 o
n

[ r n0e
2 i( v n 2 v 0)te 2 (1/2) g nt r (zn, 0)

1 r 0ne
2 i( v 0 2 v n)te 2 (1/2) g nt r (0, zn)

1 o
jl

r jle
2 i n j

lte 2 G j
lt b ( s j , z j

l)

1 #
`

0

d s F r s b ( s ) 1 o
l

r s le
2 i n lte 2 G lt b ( s , z l) G

5 r
*

1 e 2 g mint r 1(t) (13.2)

where in the second term on the r.h.s. we have made explicit the slowest
damping factor so g min 5 min( g n, G l) . 0. all other factors contained in Eq.

(13.2) are oscillatory and they have a faster decrease than the slowest damping

factor. Since the trace of the off-diagonal vanishes, and using Eq. (4.24), we

know that

Tr r 1(t) 5 0, Tr r 2
1(t) 5 0, r n

1(t) 5 0, if n . 2 (13.3)

We can also introduce a diagonal factor r 2 1

*
among the factors r 1(t) and the

result will be the same; since these matrices r 2 1

*
are diagonal, they only

modify the coefficient in the expansion of r 1(t), while Eq. (4.24) remains

valid. Introducing Eq. (13.2) in Eq. (13.1), we have

S(t) 5 2 Tr[( r
*
(t) 1 e 2 g mint r 1(t))log(1 1 e 2 g mint r 1(t) r 2 1

*
(t))] (13.4)

and expanding the logarithm, we obtain

S(t) 5 2 1±2 e 2 2 g mintTr[ r 2
1(t) r 2 1

*
(t)] 1 ? ? ? (13.5)

where the dots symbolize terms with higher powers of r 1(t). Then from Eq.

(13.3) we can conclude that S(t) 5 0, namely that this naive entropy is

constant and it always coincides with the equilibrium entropy. This result is

analogous to those obtained in Eq. (12.1) or Eq. (12.2). So we can conclude,

as in the previous section, that if we do not use the metric operators M and
MÄ , or eventually some projector P, we will always obtain constant naive

quantities. Thus we must somehow introduce these operators in the naive

definition (13.1). This is the new element that must be added to obtain a

growing entropy as announced in Section 9.
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The most general and satisfactory solution is to define a projector

P: F 2 ® F P , + (13.6)

and consider new projected density matrices r Ä 5 P r in such a way that a

set of necessary properties should be fulfilled. These properties are:
1.

Tr r Ä (t) 5 Tr r Ä
*

5 1 Þ Tr r Ä 1(t) 5 0 (13.7)

in order for the new projected matrices r Ä to have the same normalization
properties as the old r . In short: Tr r 5 Tr r Ä . In this sense P is completely

different than M or MÄ that transform a constant trace into a variable one.

2.

Tr r Ä 21 Þ 0, r Ä n1(t) Þ 0, m . 2 (13.8)

and this must also be the case if some factors r Ä 2 1

*
are included in the product.

From these properties we would obtain the growing of the entropy.

3.

r Ä
*

5 P r
*

5 r
*

(13.9)

in such a way that in the limit t ® ` the projection P turns out to be irrelevant

and we reobtain the usual Gibbs entropy for the equilibrium.

The most general P acting on F 2 is

P 5 o
ij

pij ) i)( jÄ ) 1 o
ij

qij ) iÄ)( jÄ ) (13.10)

where for the sake of simplicity we have once more trivialized the notation

and we have written the bases { b ( ? ? )} and { b (
,
? ? )} with just one index as

{ ) i)} and { ) iÄ)}. the most general matrix of F 2 reads

r 5 o
i

r i ) i) (13.11)

namely Eq. (4.7) in the new notation. If pij , qij P 6 ^ 6 ^ 6 ^ 6, then

the behavior at infinities is good enough and then P r P F P , +. Now if
we symbolize the diagonal states by ) I) and the off-diagonal ghost by ) m ),

we have that

r 5 o
I

r I ) I) 1 o
m

r m ) m ) (13.12)
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and

P 5 o
IJ

pIJ ) I)(J ) 1 o
I m

pI m ) I)( m Ä ) 1 o
m I

p m I ) m )(I )

1 o
m n

p m n ) m )( n Ä ) 1 o
m I

q m I ) m Ä )(I ) 1 o
m n

q m n ) m Ä )( n Ä ) (13.13)

But in order to satisfy property 3 one must have

PIJ 5 d IJ , p m I 5 q m I 5 0 (13.14)

Let us now compute

P r 5 o
I

r I ) I) 1 o
I m

pI m r m ) I) 1 o
m n

p m n r n ) m ) 1 o
m n

q m n r n ) m Ä ) (13.15)

and let us compute the traces of r and P r :

Tr r 5 o
I

r I , TrP r 5 o
I

r I 1 o
I m

pI m r m (13.16)

According to condition 1, these norms must be equal for every r m ; thus pI m 5 0.
Also, as P2 5 P, one must have

o
l

p m l p l n 5 p m n o
l

q m l p l n 5 q m n (13.17)

Then these are the conditions that the coefficients of the projector must

satisfy. These equations have solutions, since the first one is satisfied for any

projector in the ª ghostº space and the second is satisfied if p m n 5 q m n . But,
of course, more general solutions can be found. So the solution is not unique

and we would have many possible projectors that will give rise to many

possible entropies (out of equilibrium), as we will see. We also remark that

the condition P2 5 P is not strictly necessary, so we also can develop a

theory where P is not a projector. Finally,

P r 1 5 o
m n

p m n r n ) m ) 1 o
m n

q m n r n ) m Ä ) (13.18)

Thus Tr r Ä 21 5 Tr(P r 1)
2 Þ 0, r Ä n1(t) Þ 0, n . 2, and these results will be valid

if we intercalate r 2 1

*
factors. In fact, the ª qº term in P introduces ) ,ghost & ,

which does not vanish when multiplied by the ) ghost & . Then condition 2 is

also satisfied.

Now we can redefine our quantum conditional entropy as

S 5 2 Tr[ r Ä log( r Ä r 2 1

*
)] (13.19)
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Repeating the calculations, we obtain

S(t) 5 2 1±2 e 2 2 g min tTr[( r Ä 1(t))2 r 2 1

*
(t)] 1 ? ? ? (13.20)

where now the dots symbolize terms that vanish faster than the first one. But

with this new definition S(t) Þ 0 and

lim
t ® `

S(t) 5 0 (13.21)

namely S(t) goes to the equilibrium entropy when t ® ` . So, from Eq. (13.20)

we can say that near equilibrium our quantum conditional entropy is negative

and it always grows, but of course, far from the equilibrium, the evolution
may not have these properties.

So we realize that the ever-growing property of the entropy is not a

quantum property, but just a classical one. Thus, for the sake of completeness

we will sketch in the Appendix the relation between the classical case and

the quantum case. Then, using our equations, we will see that the classical

analogue of our quantum conditional entropy never decreases.
But for each P there is a different entropy, both in the quantum and the

classical cases. This is not a problem since all these entropies coincide in

the equilibrium limit, due to condition 3 (also near equilibrium all of them

have the same dominant damping factor). So we have one and only one

equilibrium thermodynamic entropy, the Gibbs one, and many nonequilibrium
entropies, which depend on the choice of P, namely the choice of the apparatus

that measures these entropies. So our position is that, even if the arrow of

time is intrinsic and defined by space F 2 , the definition of the out-of-

equilibrium entropy is observer (or measurement apparatus)-dependent. But

all these entropies grow in the same time direction and therefore share the

same arrow of time.

14. THERMALIZATION

From Eq. (3.5) we know that our method allows us to split the Hamilto-

nian into two noninteracting parts, a discrete one related to the oscillating

and damped modes of the eventual n oscillators of our model, and a continuous

one, related to the field or the bath v . In Eq. (3.5) there is no interaction

between the discrete and continuous modes, so we may ask how a bath in
thermal equilibrium can thermalize the oscillators in our model.

Obviously the thermalization can only be seen if we go to the basis

where there is some interaction between the oscillators and the bath, namely

the basis of the unperturbed Hamiltonian H0, which we can diagonalize as

H0 5 o
n

E (0)
n ) E (0)

n & ^ E (0)
n ) 1 #

`

0

E (0) ) E (0) & ^ E (0) ) dE (0) (14.1)



Minimal Reversible Quantum Mechanics 79

while the perturbed Hamiltonian reads

H 5 o
n

zn ) fn & ^ fÄn ) 1 #
`

0

v ) f v & ^ fÄ v ) d v (14.2)

But H 5 H0 1 V, so in the basis { ) E (0)
n , E (0) & } we can see the interaction

and the thermalization phenomena, but not in the basis of Eq. (14.2).

In fact, any initial r in a thermal bath can be written as

r 5 o
nm

r nm ) E (0)
n & ^ E (0)

m ) 1 Z #
`

0

e 2 b E (0) ) E (0) & ^ E (0) ) dE (0) (14.3)

(in this section we do not consider the off-diagonal components of the bath,

since we consider that the bath is always in equilibrium, so these components

take no part in the thermalization procedure). The unperturbed bath is a
thermal state at temperature b 2 1 and Z is a normalization coefficient.

Then, introducing

I 5 o
n8

) fn8 & ^ fÄn8 ) 1 #
`

0

) f v & ^ fÄ v ) d v (14.4)

in each term and tracing away the bath, because we are only interested in

the oscillator mode term r O we have

r O 5 o
nm

r nm o
n8m8

) fn8 & ^ fÄn8 ) E (0)
n & ^ E (0)

m ) fm8 & ^ fÄm8 )

1 Z #
`

0

e 2 b E (0) o
n8m8

) fn8 & ^ fÄn8 ) E (0) & ^ E (0) ) fm8 & ^ fÄm8 ) dE (0)

5 o
n8m8

) fn8 & ^ fÄm8 ) F o
nm

r nm ^ fn8 ) E (0)
n & ^ E (0)

m ) fÄm8 &

1 Z #
`

0

e 2 b E (0)
^ fn8 ) E (0) & ^ E (0) ) fÄm8 & dE (0) G (14.5)

To see what really is going on, let us go to the Friedrichs model of ref. 15

and consider the case where V ® 0 and t ® ` , using equations (5.20) of
that paper, which translated into our notation reads

) ^ fn8 ) E (0)
n & ) 2 ® 0, ) ^ E (0)

m ) fÄm8 & ) 2 ® 0

) ^ fn8 ) E (0) & ) 2 ® , d (E (0) 2 E (0)
n8 ), ) ^ E (0) ) fÄm8 & ) 2 ® , d (E (0) 2 E

(0)
m8)

(14.6)
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where we have neglected the terms like ) ^ fn8 ) E (0) & ) 2 since they vanish in the

limit when V ® 0 because they relate the discrete eigenkets to the continuous

ones. Using these equations, we obtain the result

r 0 ® , o
n

) fn & ^ fÄn ) e 2 b E (0)
n , o

n
) E (0)

n & ^ E (0)
n ) e 2 b E (0)

n (14.7)

so the oscillators will be thermalized when t ® ` , for small interactions.

15. LOCAL AND GLOBAL TIME ASYMMETRY

Let us now make precise the meaning of two important words: conven-
tional and substantial :

In mathematics we are used to working with identical objects, like points,

the two directions of an axis, the two semicones of a light cone, the two

time orientations of a time-oriented manifold, etc.
In physics there are also identical objects, like identical particles, the

two spin directions, the two minima of a typical two-minimum potential, etc.

When [3, 32] we are forced to call two identical objects by different
names we will say that we are establishing a conventional difference, e.g.,

when we call e1 and e2 two electrons, or ª upº and ª downº two spin directions,
or ª rightº and ª leftº two minima of a symmetric potential curve; while if

we call two different objects by different names, we will say that we are

establishing a substantial difference.
The problem of time asymmetry is that, in all time-symmetric normal

physical theories, usually the difference between past and future is just con-

ventional. In fact, if we change the word ª pastº by the word ª futureº in these
theories, the theory remains valid and nothing actually changes. But we have

a clear psychological feeling that the past is substantially different from the

future. Thus the problem of the arrow of time is to find theories where

the past is substantially different from the future, such that the usual well-

established physics remains valid. As we will see, our minimal irreversible

quantum mechanics is one of these theories.
But up to now we have just postulated that the states r P F 2 and the

observables R P F +, namely we have established a local time asymmetry

within a particular quantum system. To establish a global time asymmetry

for the whole universe is quite a different task.

It is clear that if we content ourselves with local time asymmetry we
face several problems; e.g., as F 2 and F + are only conventionally different,

there is no reason to justify that all the states would belong to a space F 2

and all the operators to a space F + in all the systems of the universe. Most

likely the states would belong to F 2 in the 50% of the systems of the universe

and to F + in the other 50%. For the operators we would have the inverse
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situation. Then what would happen when a system of the first class interacts

with a system of the second class? Perhaps somehow would an average arrow

of time be established?
To escape from this dilemma it is clear that we need a cosmological

model that correlates all the local arrows of time, ad we know that current

cosmological models are not completely satisfactory. Nevertheless, the most

satisfactory, realistic, and simplest model to solve the problem is the Reichen-

bach global system, [33], which we will further explain.

16. REICHENBACH GLOBAL SYSTEM

The set of irreversible processes within the universe, each one beginning

in an unstable nonequilibrium state, can be considered a global system
[33, 34]. Namely, every one of these branching processes began in a nonequi-

librium state such that this state was produced by a previous process of the
set; e.g., the Gibbs ink drop (initial unstable state) spreading in a glass of

water (irreversible process) may only exist if it was produced by an ink

factory (since the probability to concentrate an ink drop by a fluctuation in

a glass where the ink is mixed with the water, is extremely small). This

factory extracted the necessary energy from an oven where coal (initial
unstable state) was burning (branch irreversible process); in turn the coal

was created with energy coming from the sun, where hydrogen (initial unstable

state) was burning (branch irreversible process); finally, hydrogen was created

using energy obtained from the unstable initial state of the universe (the

absolute initial state of the global system). It is now clear that within the

global system all the arrows of time point to the same direction, since all of
them originated in the same global initial unstable state (why the initial state

is unstable is explained in refs. 34 and 35 and it is not of concern in this paper).

Of course the Reichenbach global system was originally imagined as a

model of the classical universe. But we can also imagine a quantum

global system.

Let us draw the usual diagram of a scattering experiment (Fig. 2) to
have a graphic idea of the nature of the unstable states. In the center of the

diagram there is a black box that symbolizes any scattering process. A set

of stable ª inº states a1, a2, . . . is transformed by the scattering process into

another set of stable ª outº states b1, b2, . . . . It is a reversible process because

the evolution equations are time-reversible, so we can interchange the ª inº

and ª outº states and all the results remain valid. In fact, Fig. 2 is essentially
symmetric. The variation of the quantum entropy vanishes in this process.

Now, let us cut the black box into two parts by the dashed line draw at

t 5 0. Then, we can consider the right side of the figure, namely Fig. 3. This

figure was introduced by Bohm [5], so we will call this kind of figure a
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Fig. 2. Ordinary scattering diagram, with a black box.

Bohm diagram. In Fig. 3 the set of stable incoming states creates a set of
unstable states, u1, u2, . . . , which are growing states and they belong to

space f + [7] (e.g., radiation exciting an electron of the ground state). As the

states of f + are linear combinations of the states of f 3
2 , in some sense they

can also be considered as growing states and as such they can be symbolized

as horizontal lines inside the half box. Figure 3 is asymmetric and it symbol-

izes an irreversible creation process. The evolution equation is still time-
symmetric, but irreversibility is introduced by the growing nature of the states

Fig. 3. Bohm diagram for growing states.
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of space f 3
2 or by the noninvertible time evolution operator acting on f 2

for t , 0. the variation of the entropy is negative in this process. This is not

contradictory, since in every creation process there is an incoming energy
and then we can consider the system as an open one.

We can also consider the second half of Fig. 1, namely Fig. 4. It is the

Bohm diagram of a decaying process where a set of unstable decaying states

u1, u2, . . . , which are linear combinations of the basis of space f 3
+ , is

transformed into a set of stable outgoing stable states of f 2 (e.g., an excited

electron decaying into the ground state and emitting radiation). Figure 4 is
asymmetric and symbolizes a decaying irreversible process. Again, the evolu-

tion equations are still time-symmetric, but the decaying nature of the states

of space f 3
+ introduces irreversibility, etc. The variation of the entropy is

positive in this process. These would be the diagrams corresponding to

local processes.

But Bohm diagrams also allow us to see the quantum structure of a
global system (Fig. 5). The universe is represented by a set of branching

scattering processes with one initial unstable state symbolized by the cut box

(at the Big-Bang time t 5 0 at the far right. Each subsystem going from an

unstable state to equilibrium (an ink drop spreading in water, a sugar lump

dissolving in coffee, . . .) is symbolized by a decay process like the one of
Fig. 4, namely the diagram in the upper shaded box of Fig. 5. The creation

Fig. 4. Bohm diagram for decaying states.
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Fig. 5. Bohm diagram for the branch system.

of an unstable state is symbolized by a creation process (like the one of Fig.

3) where energy comes from a previous decay process (the ink factory with

its oven). One of these larger subsystems with its source of energy is repre-

sented in the biggest lower dotted box in Fig. 5. The overall process is

irreversible, because Fig. 5 is asymmetric, and if we have a model of this

universe (see some simple models in refs. 25 and 36) the state of the universe

must belong to some global space f G
2 or F G

2 . Therefore in this diagram there

is a clear arrow of time. but in the previous diagrams (Fig. 3 or Fig. 4) the

arrow of time was a ª localº one, while this diagram has one of the most

important characteristics of the observed time asymmetry: it is global. This

is the way to introduce the arrow of time in a time-symmetric dynamical

formalism: by a global and generalized symmetry-breaking process.

But we must remember that the difference between the global F G
2 and

the global F G
1 of the whole universe global system is just conventional since

these two spaces are identical. Thus physics is the same in F G
2 as in F G

1 .

Think of a cosmological model (Fig. 5), life will be the same in this universe

(with a quantum state in space F G
2 ) as in the universe of Fig. 6, the time-

inverted image of Fig. 5 (with a t-inverted quantum state in space F G
1 ). In

fact, since in both models of the universe (if completely computed) all the

arrows of time must point in the same direction, there is no physical way to

decide if we are in one model or the other. So both models are identical.

Thus the choice between F G
2 and F G

1 is just conventional and physically

irrelevant (as in choosing one of the two minima of the potential in the

spontaneous symmetry-breaking problem).
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Fig. 6. Specular image of Fig. 5.

But once this choice is made, a substantial difference is established in

the model e.g., the only time evolution operator is U 2 (t) 5 e 2 iHt, t . 0, and

it cannot be inverted; we only have equilibrium toward the future, entropy

growing, etc.

Once the F G
2 or the F G

1 is chosen in the global system, we are forced

to choose the corresponding spaces in the local subsystems, if we want to
study these subsystems as isolated systems, and a global arrow of time is

established. This fact solves the problem stated in the preceding section.

Thus the choice between F G
2 and F G

1 is trivial and unimportant (but this

choice must be a global one), which is why the arrow of time is not introduced

by hand in our theory. The important choice is between +G and F G
2 (or

F G
1 ) as the space of our physically admissible states. And we are free to

make this choice, since a good physical theory begins with the choice of the

best mathematical structure to mimic nature. Thus, our thesis is essentially
that time-asymmetric mathematical structures like ours mimic in a more
economical way the time asymmetry of the nature in which we live than do
time-symmetric mathematical structures.

17. OTHER RESULTS

The main results related to quantum mechanics are stated in the above

sections. But we must comment that using the present formalism, all the
relevant results of irreversible statistical mechanics can also be obtained, e.g.,

all the results of ref. 37, as is proved in ref. 2, because the main P projector

of ref. 37 can be defined using Gel’ fand triplets. Also, in some simple cases,

we can go from quantum models to classical ones [11], where we find the
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same philosophy in the classical cases. Chaotic models like the Baker’ s

transformation and Renyi maps are also treated with the same method, with

good results [31, 38]. Other interesting results are contained in refs. 5, 16,
21, 39, and 40. Thus, the given quantum axiomatic formalism is a general

method for dealing with irreversible processes.

18. CONCLUSION

Our axiomatic formalism condenses the main ideas of how to solve the

problem of time asymmetry pioneered by various authors as cited in the

references. This method, based on the reasoning given in the introduction,

yields correct physical results that coincide with those obtained by other

methods (coarse-graining, traces, stochastic noise, loss of information, etc.).

We do not foresee any crucial experiment to settle which of the quoted
methods (coarse-graining, traces, stochastic noise, loss of information, etc.)

or ours is the correct one, because we think that they are somehow complemen-

tary and that they only explain the real physical world in different ways.

Therefore we believe that we must solve at least three problems in order to

complete our theory.:
(a) The methods of coarse-graining, traces, projections, stochastic noise,

loss of information, etc., have clear physical motivations. On the contrary,

our method is just based on the search for the minimal mathematical structure

to explain time irreversibility. Even if this reason were sufficient for mathe-

matically minded readers, it turns out to be not so eloquent for physically

minded ones. So we must find a relation among all the methods because
most probably they are all based on the same or very similar (eloquent)

physical grounds. This work was already begun in ref. 10, where it is shown

that causality is the real reason for the choice of the proper space of physi-

cal states.

(b) We have admitted, under Eq. (2.9), that there is not a unique way

to define the space f 2 . We must find the necessary and sufficient condition
to define a unique space f 2 or at least a class of spaces all of them endowed

with enough properties to explain all phenomena related with time asymmetry.

Lax±Phillips scattering theory, recently redeveloped by Pavlov [42], and ref.

10 seem the more promosing ways to solve the problem.

(c) Essentially space F 2 is the one where all out-of-equi librium entropies

turn out to be growing. But as we said at the beginning of Section 13, a
complete study that singles out in an indisputable way an entropy that general-

izes the phenomenological thermodynamic entropy at equilibrium is missing.

Most likely only when this task will be accomplished will we be able to

motivate the choice of the space F 2 convincingly.
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Meanwhile we just claim that our formalism is a contribution to the

understanding of time asymmetry.

APPENDIX. WIGNER FUNCTION INTEGRAL AND
CLASSICAL ENTROPY

Let r be a density matrix of Liouville space + 5 * % (* ^ *) and

let { ) q & } be the configuration or position basis of the Hilbert space *. The

Wigner function corresponding to state r is a real, but not positive-definite
quantity that reads [ref. 41, Eq. (2.1)]

r W (q, p) 5 p 2 1 # ^ q 2 l ) r ) q 1 l & e2i l p d l (A.1)

This equation is valid if the wave function has only one variable. If it has n
variables the p 2 1 must be changed by p 2 n. It can be proved that

L r W(q, p) 5 p 2 1 # ^ q 2 l ) L r ) q 1 l & e2i l p d l 1 O( " ) (A.2)

where L is respectively the classical and quantum Liouville operator. In the

classical limit " ® 0, therefore, r W can be considered as the classical distribu-

tion function corresponding to r . As in the classical regime we practically

work in this limit, we will consider that Eq. (A.1) is the relation between
the quantum density matrix and the classical distribution function. In fact,

even if r W is not generally positive definite, using the Wigner integral, we

can obtain quantum equations from classical equations and vice versa, as we

will see in a few examples. For example, let us observe that [ref. 41, Eq. (2.6)]

i r W i 5 # # r W(q, p) dq dp

5 # dq # ^ q 2 l ) r ) q 1 l & d ( l ) d l 5 Tr r (A.3)

so to the classical norm corresponds the quantum trace. Also, if we define

the classical analogue of operator O as [ref. 41, Eq. (2.12)]

OW(q, p) 5 # dz eipz^ q 2 1±2 z ) O ) q 1 1±2 z & (A.4)

we obtain that

( r W ) OW) 5 # # r W(q, p)OW(q, p) dp dq 5 Tr( r O) (A.5)
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Therefore to the inner product in classical Liouville space corresponds the

inner product in the quantum Liouville space. Finally, if O1 and O2 are two

operators and OP 5 O1O2, we have [ref. 41, Eq. (2.59)]

OPW(q, p) 5 Q1W(q, p)e L /2iO2W(q, p) (A.6)

where

L 5
-¬

- p

-®

- q
2

-¬

- q

-®

- p
(A.7)

Therefore if O1 5 O2, we have that

OPW(q, p) 5 [O1W(q, p)]2 (A.8)

This fact completes the analogy between classical and quantum spaces imple-

mented by the Wigner integral.

As the Wigner integral (A.1) is a linear mapping, the quantum evolution
equation (13.2) can be reproduced in the ª classical caseº as

r W(t) 5 r
*W 1 e 2 g mint r 1W(t) (A.9)

where, somehow, r W could be considered as a classical distribution function.

This is not so because it is not positive definite, but we will see that r W has

this property near equilibrium, where we know that, due to the appearance

of decoherence and correlations, the state is classical.
In fact, the classical states are defined as those having decoherence and

correlations (this fact can be seen in refs. 30 and 23 using the coarse-graining

method or using our method, in Section 11 of this paper for decoherence

and in ref. 25 for correlations), namely those that can be expanded as

r 5 o
I

r I ) I & cor ^ I ) cor, r I $ 0 (A.10)

where ) I & cor is a no-ghost state such that its position ^ q ) I & cor and its momentum
^ p ) I & cor are correlated, i.e., they are as defined as possible (e.g., as the ground

state of a H atom). Precisely, they are as defined as is allowed by the

uncertainty principle around a point (qI, pI). The quantum equilibrium state

r
*

is one of these states. Let r
*W be the classical equilibrium state. The

Wigner integral of this state gives

r
*W(q, p) 5 p 2 1 #

1 `

2 `

^ q 2 l ) r * ) q 1 l & e 2 2i l p d l

5 p 2 1 o
I

r I* #
1 `

2 `

^ q 2 l ) I & cor ^ I ) cor ) q 1 l & e 2 2i l p d l
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> p 2 1 o
I

r I* #
1 `

2 `

^ qI 2 l ) I & cor ^ I ) cor ) qI 1 l & d ( l )e 2 2i l p d l

5 p 2 1 o
I

r I* #
1 `

2 `
) ^ qI ) I & cor ) 2e 2 2i l p d ( l ) d l

5 p 2 1 o
I

r I* ) ^ qI ) I & cor ) 2 $ 0 (A.11)

since the functions ^ qI ) I & cor and ^ I ) cor ) qI & vanish except around a definite value

of qI , so the states ^ q 6 l ) are only different from zero when q > qI and

l . 0 [this is the reason for the factor d ( l )] and because of Eq. (7.4), which
is valid for r

*
. Then we conclude that the equilibrium states and the quantum

states near (qI , pI) have the property r W(q, p) $ 0 and therefore these Wigner

functions can be considered classical states. These states disappear if we wait

long enough due to the damping term in Eq. (A.9).

So, in this classical regime, a usual conditional entropy can be defined,

and any quantum formula can be reobtained in the classical case. Of course
we can directly work in this regime if we consider the classical analogue of

our formalism and the poles of the classical Liouville operator [31]. But now

we know [20, 43] that this classical conditional entropy never decreases. So

we can consider r W and make a projection obtaining r Ä W and define

S( r Ä W) 5 # G

r Ä W log
r Ä W
r
*W

dq dp (A.12)

As this entropy is never decreasing, we know that S( r Ä
?

W) $ 0. Also, as r W

is given by the sum of local terms (A.10), this definition contains the notion

of local equilibrium entropy. Now we can repeat everything we did in the

quantum case, since conditions 1±3 can be translated to the quantum case,

condition 1 using Eq. (A.3), condition 2 using Eq. (A.6), and condition 3
using Eq. (A.1). So we obtain

S( r Ä W) 5 2
1

2
e 2 2 g mint # G

r Ä 21W

r
*W

dq dp 1 ? ? ? (A.13)

where the dots symbolize higher order terms. Thus

SÇ ( r Ä W) 5 g mine
2 2 g mint # G

r Ä 21W

r
*W

dq dp 1 ? ? ? (A.14)

So now it is clear that SÇ ( r Ä W) . 0 and that we have obtained the second law

of thermodynamics. This is not at all surprising since it is well known that,
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by a projection, the constant S( r W) can be transformed into the variable S( r Ä W).

We have just shown how our method works and also how we can obtain the

classical results (A.9) and (A.13).
So our S( r Ä W) has all the properties that we announced and we can claim

that it is a good candidate to play the role of internal entropy.
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